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Abstract.

A fast algorithm is described which calculates the

space charge layer width and junction capacitance for an

arbitrary impurity profile-and for plane, cylindrical and

spherical junctions.

The algorithm is based on the abrupt space charge

edge (ASCE) approximation.

A method to use the algorithm for the determination

of impurity profiles for two-sided junctions is presented.

An expression is derived for the built-in voltage to be used

for capacitance calculations with the ASCE approximation.

Experimental evidence is given that the algorithm permits very

accurate capacitance calculations and also predicts the exact

temperature dependence of the junction capacitance.
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: :List of snmbols

A : mesa-diode area (cm 2 )

. profile parameter satisfying: N = N erfc(d)
A o

C : Junction capacitance (F)

th
C : k calculated capacitance value (F)
k

th
Cmk k measured capacitance value (F)

D : diffusion coefficient of a dopant (cm2 /sec)

: permittivity of the semiconductor (F/cm)

E : electric field in the depletion layer (V/cm)

k : Boltzmann constant

L : L = 2 : characteristic diffusion length (cm)

N(x) : net. impurity profile (cm
-

3 )

n : intrinsic density of the semiconductor (cm
-
3 )

3
N : substrate doping (cm

-
3 )

A

N : surface concentration of diffusion dopant (cm )
0

: parameter vector in the profile function N(x,p)

q : electronic charge (1.6 10 C)

t : diffusion time (sec)

V electrostatic potential in the semiconductor

V voltage applied to the diode (reverse bias is positive)
a (Volt)

V : built-in voltage used to calculate the depletion layer

width. (Volt)

I

- : 



ii

(t ) (= kT/q) ln(N(.x (Va)) . N(.x (V)) /n 2 : theoretical
aVq 1.n . a ar i.

built-in voltage at voltage V 

:;;gradient voltage defined as the intercept of the

3
tangent to a C 3(V ) curve for V = 0

a a

-3
: intercept' with the V -axis of the C (V ) curve (Volt)

a a

Z : coordinate axis in the semiconductor

x (r ): -junction depth from the surface of the semiconductor
j J.

: left-hand edge of the space charge layer
1

-right-hand edge of the space charge layer
r

gCt) : performance index to calculate the profile parameters

-
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I. Introduction.

Several authors have calculated the junction capaci-

tance versus bias for some specific types of impurity pro-

1,2,3,4
files. The results are usually represented by a

normalized graph. These graphs are useful if only a few cal-

culations are required and if the impurity profile corresponds

to the one used to construct the graph. In many cases the pro-

file is different and the junction capacitance or depletion

layer width has to be used as part of a computer program for

calculations of device behavior. In these cases it is conve-

nient to have an efficient algorithm that calculates the deple-

tion layer characteristics for any voltage, impurity profile

and semiconductor material. Examples are: detailed modeling

o-f JFET's, design of varactors , avalanche breakdown calcula-

6 7
tions , transistor modeling.

Such an algorithm based on the abrupt space charge edge

4
(ASCE) approximation and an application of it to the deter-

mination of impurity profiles for two-sided junctions is des-

cribed here.

8,9
It is recognized that more elaborate programs exist

that calculate the exact capacitance taking the mobile charge

9,0
carriers into account. However, it has been shown that,

for capacitance calculations, a simple correction to the
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theoretical built-in voltage at zero bias, (Vbt(O)), can

account for the mobile carriers. A more general expression

for this correction is derived here. It is valid at any

temperature and for any semiconductor. As a result the ASCE

Approximation can be used for capacitance calculations, thus

saving a considerable amount of computer time. Moreover,

even in the exact programs computation time is saved if the

Gummel's Iteration method is started from a first guess

calculated from the ASCE approximation. This is another appli-

cation for the algorithm presented here.

--II. The algorithm.

The algorithm consists of two parts: the starting algo-

rithm and the Newton's iteration. The latter is described first.

a. Newton's iteration.

Let N(x) represent an impurity profile function such

that:

N(x)> 0 for xcO - (la)

N(x)O 0 for x O (lb)

The function N(x) need not to be continuous at x = 0 which is

the location of the metallurgical junction (fig. 1). The con-
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for the time being, that the built-in voltage V is known.

b

It is easy to show that the double integration of Poisson's

equation:

d V q N(x)
- .(2)

dx E

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~X=X.~~~~~~~~~~~~~

'"-'- " 'w dithondary nditionsr since ay profile can satis-

dV .0 (4) 

z...

yields:

F y (a,b) by a chage N(x)dx the sign of (x)
rXlx aaa

G(x x ) xNhx)dx tm b+V t 0 (6)
r q a b

It is easy to show that thise double integration can also be corrected byisson's

d.v q x

using the appropriate V. Equations (5) and (6) are the

2is e t f in 5 ) and (6) ar (t )

basic set of equations for x and x . Equations (5) and (6)
r



: can be solved numerically with Newton's iteration method.

Once x and x are known the capacitance is given by:
1

C = - _ (7)
X -X
r -

(i) th
Let Cx , x ) be the result of the i iteration

r 1

and let

(i+i) (i) i)
x = -x + ax (8)

r r r

'" . -(i+i) (i) a(i)
x = x + x

1 1

be a better approximation. Let further

(i) (i) (i)
and G = G(x ,-x ). Accordingly,

r 1

:M- XF
( i ) A

I 1~~~

(i)
F = F(x

i )

,r

F(i)

(i)

1

i)x(i) GAd 3G x ^ )) |G (i)

r 1

Carrying out the differentiations on (5) and (6) we have:

(1) (i) 'i)
N(x ) N(x ) x) F

r 1 r 

Ci) (i) (i) (i) (i)
x(i) N(x )) -x N(x x G
r r 1 1 1

Equation (11) shows the advantage of applying Newton's method

since the calculation of the partial derivatives OF/Ix end
r,1

-N

.1 AN
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.:-- xr 1 requires only two profile function calculations.

Apparently the calculation of the right hand side of (ii)

requires two accurate numerical integrations for each itera-

tion. However, with (x , x ) representing the starting
' 1
(i)

values for the iteration, F can be written as:

x i-I i- ix(k)

F N(x)dx = r N(x)dx + r x)d + N()dx
k= x

( k ) (k
1 1 r 1

(12)

(({ ) (1)
If (x x ) is close enough to the solution, then at each

r
(k) (k+l) (k+d) (k)

iteration the intervals (xr x ) and (x , x ) are
1F 1 1

small enough to use a three point Simpson iteration such that

th
at the i iteration we only calculate for example:

r (i+ ) ( (i)
N(x)dx . !(X )+ 4N((x ( + X )/2))+N((i' i) r r r rX 3

(13)

(i)
Since N(x ) is known from the previous step it is easy to

r

show that for each Newton iteration, except for the first,

only four new function evaluations need to be done to update

-F and G and to calculate the next iteration point.

Usually three iterations are sufficient for a relative accuracy

of 10 for (xr, x), such that about twelve function evalua-

tions are needed in this part of the algorithm. The problem

is now to find appropriate starting values (x , x
r 1
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b. The starting algorithm.

-A method for the calculation of (x(), x(1 )) that
r 1

-() (')
permits the calculation of F and G at almost no extra

cost will be described.

Let x and x be defined from:
rm 1mr

rm5,rm
G(x ,0) xN(x)dx + ( + V ) - o (14)

FrmOq -a b0

G(O,x ) xx(x)dx + -(V + V ) (15)
lm x q a b

lm

Then from (la,b) and (5) and (6) it follows that:

rm = sup (xr ) and X =inf (x

Further G(x ,x) defines a curve x g(x ) in the (x ,x
1
) plane

(fig. 2) going through A(O,xlm) and B(xrm,0) and having a

derivative:

dx _ ;G/2 xr x N(x )
'(x ) = = r r (16)

r dxr G/x x1N(x) I

as can be found from conditions (la,b), Further from (16):

g'(0) = o (17)

and g'(x ) = + ·(18)
rm

From (16), (17) and (18) it follows that x =g(x ) is a curve
1 r

of the form indicated in fig. 2 by curve .-

The function F(x ,x ) defines a curve x =f(x ) in the
1 1 r

(xrx ) plane, going through the origin 0 (fig. 2) and having
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a derivative:

- -- /Ix N(x
r

)
f'(x) = -= <0 (19)

..- -- - -F/g3x N(x)
.1 1

by condition (la,b). It is a decreasing function represented

by curve O on fig. 2.

The intersection C(x ,x ) is the solution to the

( 1)problem. The point D(x ,x1 ) is considered as the starting

value for Newton's method. This point is obtained as follows:

a. For a given N'(x), V and V , find x and x
-- a b rrm lm

(points A and B in fig. 2)

b. Find the intersection I of the line AB and x = f(x )
~1 r

c. Calculate the intersection, D, with the curve

x
1

= g(x ) of the tangent line t to x = f(x )
1 - r -1I r

in point I.

Note that the equation for t is simply given by:

(x i)

1 li N(x i) r ri

In all practical cases, point D is within 10% of the required

solution. Note also that since D is only a starting point,

it does not need to be calculated with high precision.

Details of the starting algorithm are given in Appendix A.

Basically the method consists of a stepping along the x
1

and x axis to find approximations for x and x During
r rm lm

this operation a maximum of 50 but typically 40 function



8.

.values are calculated only once and stored in the memory.

These values are then used in arithmetic operations only to

find I and D. At the same time these stored values are

used in Simpson's rule to calculate F and G( The

total number of function evaluations to find (x , x ) is
r 1

typically 60-65 for three Newton iterations.

It should be noted that:

a. The above described algorithm can easily be adapted

to calculate both cylindrical and spherical junctions as

indicated in appendix B.

b. If (x ,x ) has to be calculated for many successive
r 1

voltages Va, the starting algorithm is used only once. The

preceding values of (xr,x1 ) are then used as starting values

for the next voltage.

III. The built-in voltage Vb.

Depending on the use of the algorithm we consider three

possibilities for V

a. A known Vb

- This is the case, for example, if the algorithm is

used to calculate impurity profiles from C(V
a

) measurements

as described in section IVa. This case is trivial since the
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basic algorithm can be used without modification.

b. The algorithm is used to calculate approximate field and

potential distributions.

In this case V is given by:

bt a 0 ) kT i N(xr(Va)) N( ( ))) 21)

= b(V ) - n V(xX 1 ) (21)q 2 b
ni

Strictly speaking, the method of section II becomes invalid

since Vb is itself a function of the solution (xr,x). Due
b 1

to the logarithmic dependence, V (x ,x ) is a slowly varying
br l

function and thus the following procedure can be used. The

(0)
algorithm is started with V = 0.7 Volt as a first guess.

From the starting algorithm (x ,x ) are found and
r X1 ) are found and

V = Vb (x()x()) can be calculated and used in Newton's

iteration. This gives a first approximation (x ,x ) for the
ril it

(2)
solution (x ,xl). Y = V (x ,xl ) is then a better

(2)
approximation for V

b
and with V

b
and (x r,xl) as new star-

ting values Newton's iteration is used again. This is repeated

until:

I(i+i) _ V(i)| 4 0.1 mV

which occurs after 2 ... 3 Newton iteration cycles.

If necessary the field - and potential distributions
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can be found from:
X

,-"'. -.

dr 1 N "(~)dr (22)

VWx)- V(X1 ) =x- (X) + 5 N( (23)

Equations (22) and (23) follow from the integration

of (2), using (3). The numerical integration of (22) and (23)

can be done using the function values stored during the star-

ting algorithm, such that t(x) and V(x) are found without

too many extra calculations. This is useful for breakdown

and avalanche multiplication calculations.

c. Capacitance calculations.

Almost all diffused junctions (and even epitaxial

Junctions) behave almost. as linear junctions at low reverse

4,6
-and forward bias i.e. C (V ) is indistinguishible

a

from a linear function intersecting the V axis at the inter-
a

9,i0
cept voltage V

l
. Nuyts and Van Overstraeten have shown

numerically that almost correct junction capacitances can be

calculated with the ASCE approximation if. the built-in voltage

V b is taken equal to the intercept voltage V given by:
b ±

V V (0) V- -24)bt be 
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i They found V & 0.13 Volt for silicon, at room temperature,
bc

Using the concept of "gradient" voltage, introduced by

Chawla and Gummel it is possible to find a more general

expression for V . The gradient voltage V is the intercept
bc g

-3
voltage of a tangent to the C (V ) curve for V = 0 volt and

a a
4

is shown to be:
2

2 kT a £ kT
V =--l:n - (25)
g 3 q 8q 2 n-

10
-Nuyts has shown that the gradient voltage -is 2kT/3 higher

than the intercept voltage V used in (24). As a result:

2 kTrr a EkT
v V (0) - v =n---ln - 1(26)

i bt bc 3 q 8qni 

We also have:
2 2(0

)kT a w ) (
Vbt(0) = In (27)

12FVbt(O ) i/3
and w(O) = (- ) .(28)

qa

After elimination of w(O) and a from (26), (27) and (28) and

solving for V
bc

2 kT
V bc 12qVbt(0) 1-V = _ n( ) + 1 (29)

bc 3 q kT

Such that:

2 kT 12qVbt(0) (30)
V = V ()- n( (30)
b bt 3q kT

For silicon at room temperature and assuming V (0) = 0.8079
bt

- Volt for a = lo cm , (29) gives V = 0.120 Volt which is
bc
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- --- in good agreement with V = 0.13 Volt found by. Nuyts and
b.

-Van Overstraeten. The procedure for calculating C(V ) curves

is now:

a. Set V =0 and calculate V (O) according to the
-a bt

method described in II b.

b. Calculate V from (30).
b

c. Since V' is known now, calculate C(V ) for all
b a

given V using the basic algorithm.
a

IV. Applications.

a. Impurity profile determination for two-sided Junctions.

The determination of a profile on a two-sided junction

is only possible if the profile is exactly known on one side

This is not the case for most diffused devices. Very often

however it is possible to formulate an analytical expression

describing the profile around the metallurgical junction. This

expression depends on aparameter-vector T and can thus be

written as:

N = N(x,p) (31)

The vector p has to be found such that (31) gives the measured

C(V ) dependence. In order to keep mathematics simple we
a

describe the case for measurements on mesa-diodes although

the method can easily be adapted to planar junctions using
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the expression for cylindrical and spherical junctions as

given in Appendix B. The disadvantage is that for planar

Junctions the computer time is almost doubled by the addi-

tional calculations.. ........

Let C = C (V ) be the measured capacitance va-
mk mk ak

lues at the voltages V where k = 1, 2 ... m and m is the
ak

total number of capacitance measurements from slight forward

bias (-0.5V) up to breakdown voltage. First the built-in

voltage Vb is calculated. This is done by fitting a straight

-3
line through the points Cmk (Vak) for -0.5 Vak o0.f Volt.

The intercept V
i

of this line with the V -axis is the built-
1i u a

in voltage Vb . Once V known we can calculate, for a given

N(x, p):

Ck = Ck(Vak, V b ) =k ka'b

A

Xrk(c) - xlk ()

xrk(p) and xlk () are calculated from the basic algorithm

for the given N(x, ), Vak and Vb.
ak b

We now define a performance index:

cT;p A t CmkC (33)

I f ~~~ i s f o u n d s u c h t h a t : ~ ~ ~ ~ ~ ~ .

If p' is found such that:
-m

..P = n ·(. ) (34)

(32)

.. . .

.. .

. .

. .

. .

·. 
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Then the impurity profile corresponding to the C(V ) easu-

rements is given by:

-"N(x) = q x, -) O - -. (35)

Efficient algorithms to minimize ~(p) such as

12
Fletcher-Powell's method require the evaluation of the

gradient Perturbation methods to calculate g

are very inefficient in time and are too inaccurate. A more

efficient way starts from the definition (33) of A):

.. ) (C C
'g = =-k mk k (36)

J ipj = 2 pmk j1

---From (36) and (32): ..

2
2 m Ck x \

g A (C 1

Ii k == mk k mk 9pj Dp

The problem is reduced now to the calculation of

~ xr/p
j
and axl/ap . Therefore consider eq,(5) and (6)

where N(x) is substituted by N(x, 7) such that F(x ,x ) and
1

G(xr,x
1
) become F(x ,x ,P) and G(x ,x ,p). Taking the total

r r 1

differential of F and G with respect to x , x and p
r 1 

yields:

(37)

-- !
..- I

* . I

. .I

.. 



x N. .. .'(x .

N -'r -rN(x
1

,F)

' , ' '-'~.'' ' ~ '. '- - ' ;- I.; '" .' . ',.
0

Px
r

*XPj

15.

r

Pj

!Xr rW( )

x %) Pj
I38)

(38)

A comparison of (38) with (11) indicates that the

left-handside-matrix is already calculated during the last

Newton iteration in the basic algorithm. Calculating a gradient

component thus requires for ea'ch voltage only the calculation

of the two integrals in the right-handside of (38). If suc-

cesive increasing voltage steps are used, former calculated

values can be used and a simple integration rule can be applied

in the same way as described in IIa for the calculation of

(i) (i)
F and G (eq. (12) and (13)).

As an example a phosphorus diffusion from a POC1
3

source at 1075 C for 30 min. in a uniformly doped p substrate

of 0.2 fcm is considered. It is known
'1
3 ' 14 that the ioni-

zed impurity profile can be described as almost constant and

equal to about N = 2.5 1020 cm
-

3 from the surface to some

depth x (fig. 2). From there up to the junction depth. x
iost as a complementary errorfunction

the profile behaves almost as a complementary errorfunction.

= 
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In order to be consistent with the definition (1a,b)

of N(x) we take the origin at the junction. It is easy to

show that the profile around the junction can be written as:

--2N - 22
N(x) = - L e 5 dt = N(x,L,C() (39)

wher . - 10-20 -3

where N = 2.5 10 cm , L = 2 ~rf and io is such that0

the substrate doping NA is given by:

N = N ertc () (40)
A o

Since NO is assumed to be known, the parameter vector p is

given by:

'p = (L,c) 

-3 -3
A mesa diode of an area A = 10 cm was made from the

diffused wafer and the C(Va ) curve was measured with a Boonton

75A bridge. The measured points are given in column I and II

-3
of table 1. Curve 4 on fig. 4 gives C (V ) for forward bias.

a

From this figure the intercept voltage V is read to be:

V = V 0.680 V
i b

-12
Using this value for V and taking £ = 1.04 10 F/cm for

b

silicon the above described curve fitting technique, with a

Fletcher-Powell minimization routine, was performed for the

17 C(V ) points. Starting values for p are:
a
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' = 2.3

-5
and L = 4.110 cm.

The C(V

a

) values calculated from these starting values

:are given in column III of table 1. The mean error is about

40%. After 6 iterations, requiring 10 sec. CPU time on the

CDC 6400 computer, convergence was obtained for the following

parameters:

= 2.438

-5
L = 5.742 10 cm

-X 2= . 40 /tm

17 -3
N = 1.413 10 cm
A

-.----The mean error for these final values is 0.3% which

is within the experimental error of the C(Va ) measurements in-

dicating that the erfc, is a good approximation to the profile.

The capacitance calculated from the final profile parameter

are given in column III of table 1. Note the very close agree-

ment with the measured values. The diffusion depth was measu-

red to be xj = 2.27/tm such that the profile can be construc-

ted as is done in fig. 3. The sheet-resistivity calculated

15
from this profile using Irvin's method gives 2.92/a ,

which is in good agreement with the measured value of 2.852/a.

17 -3
Note also that the computed result N = 1.413 10 cm is close

17 -3
to NA = 1.5 ... 2.0 10 cm which is derived from the resis-

A~~~ ~, 
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tivity of the substrate. This example illustrates how the

algorithm can be used to fit impurity profiles to C(V ) mea-

surements.

b. Calculation of C(Va ) curves.

Using the above-determined profile parameters, we can

calculate C(V ) curves at different temperatures using the
a

procedure described in section IIc. and compare the results

-3
with measurements. Fig. 4 is a set of measured C (V ) curves

a

at six different- temperatures. The intercepts with the V -axis
a

of the straight lines through the experimental points repre-

sent the measured built-in voltage at the different temperatu-

res. The crosses are calculated points and the crosses on

the V axis represent the Vb values calculated from (30).

Fig. 5 shows calculated C(T) curves at different bias

points using V given by eq. (30). The dots are again measured

values. Note the large temperature sensitivity for forward

bias due to the important role of V (T). It is obvious from
b

fig. 4 and 5. that the use of eq. (30) for V makes accurate
b

capacitance calculations possible with the ASCE approximation,

even for moderate forward bias levels. Moreover eq. (30) also

describes the temperature dependence of V accurately. This
b

is illustrated in fig. 6 where the built-in voltage calculated
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from (30) is plotted and compared with measured values indi-

cated by the dots. The agreement is quite well over the

temperature range considered here. Note that AV /dT -2mV/°C
b

for the (-55, 125°C) temperature range. This value is fairly

typical for most junctions in I.C. transistors.

V. Conclusion.

A fast algorithm has been described which calculates

the junction capacitance for an arbitrary impurity profile

and applied voltage V . It is shown that due to the form
a

of the basic equations, Newton's method is especially effi-

cient to use. The algorithm is based on the abrupt space

charge edge (ASCE) approximation. It is found that, by an

appropriate correction to the theoretical built-in voltage

V (O0), almost exact C(V ) curves can be calculated even for
bt a

forward bias and at different temperatures.

On the other hand, it is shown how the algorithm can

be used to calculate the parameters of an analytical expression

for an impurity profile from a measured C(V ) curve.
a



. Table 1.

Column I: Applied voltage V (positive for reverse
ak

bias)

(Volt)

Column II: Measured capacitance values (pF)

Column III: Calculated capacitance from the final profile

parameters

Column IV: Calculated capacitance from the initial profile

parameters

I .... I III IV

V (Volts) C (pF) C (final)(pF) C (initial)(pF)
ak mk k k

-0.4030 87.70 87,42 108.0
-0.3503 82.39 82.43 101.9

-0.3020 78,45 78.70 9.9728

-0.2500 75.25 75.34 93,15

-0.1483 70,07 70.10 86,72

-0.5070 66.16 66.20 81.93
0, 64.52 64.47 79.82

0,2058 58,93 58.90 72.99

1.0000 r 47.27 47.24 58.73

3.038 35.64 35.74 44.70

4.015 32.80 32.87 41.22
6.008 29.07 28.91 36.41

8.067 26.27 26.18 33.10

10.01 24.39 24.29 30.81

12.11 22.68 22.69 - 28.88

13.15 21,97 22.02 28.07

14.82 20.98 21.C7 -26.93

: .

. .

--:lq R -- I

q.

I,-A

::
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Appendix A: The starting algorithm.
___ ___-- ___----_____--_--_--_--- -*

a, The search for x and x

The search for x will be. described since the x
rm lm

search is analoguous. A first rough guess for x is made by
rm

calculating n such that:

k

xN (xk)dx +•i. J xN(x)dx + (V +V ) (A
k-S a b

0

-5
o( is choosen as 10 cm. A three-point Gaussian integration

is used for calculating the integrals. The summation stops when

(Al) is satisfied. From (Al) and (14) it follows:

n-1 n
-X.3 x o<. 3 (A2)

rm 

We now assume a stepsize O--r along the x -axis given by:

n- 
r = 0.lc(3 (A3)

This is used in a trapezoidal integration to find a point n
r r

such that:

rAr

xN(x)dx + (V+V b ) (A4)
q a b

0

The symbol fT indicates trapezoidal integration. Note that the

search for n is done by a simple stepping along the xr-axis
r

until (A4) is satisfied. In the same way a step 1 is calcu-



A2.o

lated on the x -axis and a point -n , is searched. such that:
1 1- 1

xN(x)dx + V +V ) 0 (A5)
q a. b .:

From (A4), (A5), (14) and (15) it follows that:

x n n A (A6)
rm r r

X l -l 1 (A?1 )
Im

Note: 1. The exact values of x and x are not important,
rm lm

so (A6) and (A7) are considered correct.

2. During operations (A4) and (A5) all the function

values f (+ k) and partial integration results

S (+ k) defined as:
x -

kA.
-(k) = N(kAr ) and Sx( k) -k xN(x)dx

r(fO o T

(f-k) = N(-k4 r)and S (-k) = xN(x)dx

are stored. From (A2) and (A3) it follows

r,1
n 1 30-

b. Search for I(x Xri) (fig. 2)

The equation of line AB (fig. 2) is:

x (x) = x (1 - r
1 r Im xr -rm

(A9)

(A10)

that

(All)

/



A3.

Thus x is the solution of:
ri

ri ..

N(x)dx = 0 (A12)
(x -

1 ri

This equation is solved with the trapezoidal integration by

stepping along the x -axis with steps / . The trapezoidal
r r

integration makes use of the values f(+k) already stored so

that no additional function values are calculated. A linear

interpolation is used whenever the coordinates do not coincide

with the grid defined by the steps A and h1 (this can be the

case for x (xri)). Note that from (A12) it follows:

x
ri

|ri N(x)dx = O (A13)

Xli

(1) (1) --
c. Search for (x ,x ).-

The equation of the tangent line t (fig. 2) is:

N(x )
X (x) = -r (x - ) (A14)
1 r Xl i - r ri1 r N(xi )

li

is the solution of:

Ci)

r xN(x)dx + -(S q
.l(X.i)

V +V ) = 0
a b

,a+V

(1)
X
r

(A15)

':: '
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This equation is solved in the same way as in steplb. . Use

is made of the stored results S (+k) and linear interpolations.

Here too no new function calculations are required. Note that

now, according to (A15): - -

G G(x x O (AI6)

so that G is obta.ined at no extra cost. We only need to

calculate:

F F(x x
+ 1 r

which, according to A(i3), is done by:

(1)

F ( = JT NCx)dx + N(x)dx (A7)

I -1 Xri

making use of f(+k) values and linear interpolation. Note

that function values are calculated only during the first

step and then always used back again.
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Appendix B: The cylindrical and spherical junction.

-The cylindrical and spherical coordinates are defined

in fig. 7. We assume that the profile function is given as:

-" - N(x ) = N(r - r.) - - .-. . . (B1)
c,s J

where the subscript c or s stands for cylindrical'or spherical

Junctions respectively.

Poisson's equation can now be written as:

i d 
_--rn dV qN(r-r.) (B2)

(B2)
r n dr dr

with n=l for cylindrical and n=2 for spherical junctions. It

is easy to show that a double integration of (B2) and a change

of coordinates to x or x leads to:

1. for cylindrical junctions:

F (x x ,x ) = (1 + -)N(x )dx = 0
c rc lc r

.(B3)

rc
X X

G (x X) = r (1 + -)ln(l + -)N(x )dx + )(V +Vb)= 0

c rc I C j r J~r j q a bXlC
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- . .

2. for spherical junctions:

x

F (x ,x ) (x + ) N(x )dx =0O
rs s . . .

Xls
(B4)

rs

G (x ,x )= (x + r )N(x )dx + V+V) = 
s .rs ls s i q a b

- 1S I

The equations (B3) or (B4) can be solved with

Newton's method in exactly the same way as given in IIa.

The partial derivatives in eq (10) are also easily calculated

from only two function values and each iteration again requires

only four function calculations. The starting values for

(B3) are the 'solution (x ,x1 ) for the plane junction and

for (B4) the solution (x ,xl ) for the cylindrical junction.

These are usually close enough to the solution if r is not
j

too small. Moreover this is usually the sequence in which

the results are needed (e.g. calculation for a rectangular

planar diffusion such as collector-base or gate-drain junc-

tions). The capacitance for one fourth of a cylindrical

wall with length is then given as:

C
C

21n (rjXlc

rj+xrc

(B5)

r;
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(B6)

The capacitance for 1/8 sphere is given by:

-. r (r -x )(r .+x
-i J is rs

., . . - . =
S 4 (x -x )rs Xls



C -aptions to the figures.
.· -- . - : f : . .-.--

Fig. 1 : Impurity profile definitions.

-Fi. 2 : Representation of eq.(5) and (6) in the (x ,x ) plane.

CurveD represents eq.(6) and curve represents eq.(5).

The intersection D of the tangent in point I to curve

2 is the starting point for the Newton iteration.

Fig. 3 : The impurity profile model for a phosphorus diffusion

at T> 1000°C in a uniformly doped substrate with con-

centration N A . The figure is drawn for the profile

in the example i.e. xl=0.'87km; x2=1.40/tm; x =2.2y4m,

17 -3 20 -3
NA-=-i.43.cm3 and N =2.5 10 cm .
A 0

Fig. 4 : Measured (0) and calculated (+) C -3(V ) curves for
a

forward bias and for six different temperatures. The

intercepts Vi of the experimental curves at the diffe-

rent temperatures are given in the insert.

Fig. 5 : Calculated C(T) curves at different applied voltages

V using VL given by eq. (30). .The dots represent

measured points.

Fig. 6 A comparison of Vb(T) given by eq. (30) and experi-

mental values (0) for Vb ,

Fig. 7 : Coordinate definitions for cylindrical and spherical

Junctions.
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